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ABSTRACT

In the interior of stars, convective turbulence (1) is characterized by eddies of all sizes and (2) is compress-
ible (the sound speed is finite). The mixing-length theory (MLT) approximates the first by assuming that there
is only one large eddy, and the second by treating turbulence as incompressible.

Here, we correct the first MLT approximation. Using two modern theories of turbulence, we compute the
full spectrum of eddies and propose a new formula for the turbulent convective flux F, to replace the corre-
sponding MLT expression. At high convective efficiencies, the new F, is up to 10 times larger than F.(MLT), a
result recently confirmed by direct numerical simulation of turbulent convection. We also calculate the turbu-
lent pressure exactly.

As for the second MLT approximation, we retain the incompressibility condition but improve over the
MLT by employing two expressions for the mixing length: (1) the standard A = «H, and (2) a new expression
free of adjustable parameters, A = z, where z is the distance to the top of the convective zone.

We apply the new model to study the evolution of a 1 M, star and of a globular cluster star of 0.8 M.
With A =aH,, the fit to the data requires « = 0.7, thus eliminating the inconsistency of an a > 1 usually
required by the MLT formalism.

With A = z, we fit the effective temperature of the Sun within 0.2% without free parameters. Implications
for helioseismology are briefly discussed. We also discuss the evolutionary tracks of a solar red giant, a globu-
lar cluster main sequence, and a red giant of 0.8 M. The new model predicts a subatmospheric density inver-
sion larger than that given by the MLT. Also, the observational turnoff of globular clusters requires a larger
mass and thus a younger age, a result of possible cosmological interest. Future applications of the new model
are discussed, together with suggestions of how to incorporate the new model in stellar evolutionary codes.

Although much work remains to be done to assess the compatibility of the new model with a wider set of
observational data, as well as to treat compressibility effects, we believe that the three new ingredients, (1) the
Sull spectrum of turbulent eddies, (2) the absence of free parameters in the A = z model, and (3) the fit to the
Sun’s data, have resulted in a model considerably more robust and complete than the MLT.

Subject headings: convection — stars: interiors — turbulence

[. INTRODUCTION

Meaningful comparisons between the theory of stellar evolu-
tion and observational data became possible after Biermann
(1948), Vitense (1953), and B6hm-Vitense (1958) proposed the
adoption of the mixing-length theory (MLT) to treat turbulent
convection in stars. The MLT has a long history. Originally
proposed a century ago, it was greatly expanded by the schools
of fluid dynamicists led by Prandtl (1925) and von Karman
(1930), who used it to describe engineering turbulent flows, e.g.,
channel flow, pipe flow, etc. The results were surprisingly good,
considering that a phenomenon as complex as turbulence was
described by a relatively simple model that contained essen-
tially one adjustable parameter, the mixing length.
Undoubtedly, the simplicity and success of the MLT played a
considerable role in the suggestion that it be applied to
describe stellar interiors.

While the MLT has proved to be a useful tool in astro-
physics, it remains an incomplete model with many unsolved
problems that repeated attempts over the years have been
unable to resolve satisfactorily (for recent work see Pederson,
VandenBerg, & Irwin 1990; Spruit, Nordlund, & Title 1990;
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Massaguer 1990). In this paper we attempt to resolve two main
limitations of the MLT:

L. The MLT treats the energy spectrum of the turbulent
eddies as if it consisted of only one large eddy—To correct for
this assumption, we begin by inquiring under what approx-
imation a general model of convective turbulence yields the
MLT expressions. First, in § 2.4, we use an analytical approach
and show that if the turbulence energy spectrum is assumed to
be a delta function (which implies only one eddy), one recovers
the MLT expression for the convective flux. Second, when we
solve the full model of turbulence for arbitrary values of the
viscosity, we show that in a viscous flow the number of eddies
contributing to the convective flux is small (Figs. 1-3); con-
versely, for a nearly inviscid system, such as the interior of a
star, the number of eddies contributing to the flux is very large.
We thus conclude that the one-eddy model adopted by the MLT
may be considered a reasonable approximation for viscous flows,
but is a poor approximation for nearly inviscid stellar interiors
which are characterized by a wide spectrum of eddies of all sizes.

In this paper we employ two modern theories of turbulence
to derive the full spectrum of turbulent eddies (the ratio of the
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largest to the smallest is greater than 10°%) which, in turn, we
use to evaluate the new expression for the convective flux.

2. The MLT does not provide the mixing length A—In § 2.8
we discuss the fact that under the conditions of incompress-
ibility (¢ —» co) and high convective efficiency, the equations
describing the turbulent flow do not provide a natural unit of
length. The assumption that turbulence is incompressible is
usually made because it provides a considerable mathematical
simplification, although it is physically incorrect in stellar inte-
riors. To balance mathematical tractability without sacrificing
a main physical feature, one employs a hybrid approach: tur-
bulence is treated as incompressible, but A is written as A =
aH,, ie., one tries to accommodate the fact that convective
eddies should be smallest near the top and become larger with
increasing depth (for the phenomenon of vertical stacking of
eddies see § 2.8).

The compromise succeeds only at the expense of having to
introduce the adjustable parameter o, which ultimately under-
mines the ability of theoretical models to make predictions and
which, from the point of view of stellar modeling, has been a
major source of discomfort. Specifically, within the MLT the
value of a is usually fixed (Mazzitelli 1979) by requiring that 1
M with Z = 0.02 has the observed T, at an age of 4.7 Gyr.
This requires 1.4 < a < 1.6 and 0.26 < Y < 0.28 (VandenBerg
& Bell 1985; Maeder & Meynet 1989). Several criticisms can be
raised against this tuning of a. For examiple, there is no a priori
reason why the conditions in the solar subatmosphere should
also exist in red giants or/and white dwarfs, where the physical
parameters are orders of magnitude different. Also, there is no
reason why the same a should apply to the entire convective
zone: in fact, helioseismological data seem to indicate that the
MLT does not provide a satisfactory description of the surface
regions (Dziemboski, Paterno, & Ventura 1988); last, a value
of @ > 1 may be considered inconsistent with the MLT, since in
most cases the thickness of the overadiabatic region is only a
fraction of H .

Since we are not yet in a position to treat compressible
turbulence (except with numerical simulations; see § 2.8), we
account for it via the mixing length and of course via the
adiabatic gradient. However, when we adopt the expression
A = aH ,, our model requires « < 1, which is a more consistent
value. Furthermore, in § 2.8 we present physical arguments
borrowed from atmospheric turbulence to suggest a new
expression for A with no adjustable parameters, namely, A = z,
where z is the distance from any point in the convective zone
(CZ) to the top of it.

The new model, equations (3) and (32), yields a convective
flux up to an order of magnitude larger than the MLT value
(see Fig. 5). It is important to stress that this result has been
recently confirmed by a direct numerical simulation of turbu-
lent convection (Cabot et al. 1990) and that it is in accord with
the results of Chan & Sofia (1989), who found that the MLT
underestimates F_.

The new model, together with the two expressions for A
discussed above, is then applied to study two evolutionary
cases of interest, the Sun and a globular cluster star of 0.8 M.
First, using A = ol ,, we obtain a good fit to the Sun with
o = 0.7. With A = z, and thus no adjustable parameters, we fit
the Sun within 0.2% (Figs. 6 and 7). By contrast, with A =z,
the MLT fails to achieve this goal (Fig. 7, curve 4). The new
temperature profile of the more external subatmospheric solar
layers is steeper than in the MLT case. This leads to larger
values of the speed of sound, a welcome feature to helio-
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seismological studies. Both for the Sun and for a globular
cluster star, T, at the turnoff is lower than in the MLT case, as
is the difference in T;; between turnoff and the base of the red
giant branch. These features require larger turnoff masses to fit
the observed H-R diagrams for open and globular clusters,
thus implying lower ages, which is a result with possible
cosmological implications. Since the new convective fluxes are
larger than the MLT values, the velocities of the convective
elements are correspondingly lower than previously assumed,
which may be relevant when considering overshooting. The
larger fluxes may also imply a different behavior for the second
and third dredge-up in advanced evolutionary phases.

Although the new model with A = z is nonlocal, we show
how it can be easily implemented in existing evolutionary
codes (§ 3.1).

2. THEORY

2.1. The New Model versus the MLT

Assuming that the depth of the convective layer is small
compared with the radius of the star, we define a locally Carte-
sian coordinate system in which the z-axis is directed radially
outward. The turbulent convective flux F, is then given by

F, = c,p{wb), )

where w is the z-component of the turbulent velocity v, and 8 is
the fluctuating component of the temperature. Equation (1)
may be more conveniently written as

dT T
@)

or, equivalently, as (H , is the pressure scale height)
F,=KTH, (V- VOV -V, 4), 3)

where K = 4acT?/3xp is the radiative conductivity, while K, is
the turbulent thermal conductivity. The dimensionless function
® = K,/K is in general a function of V — V_; and of the ther-
modynamic quantities represented by the parameter 4. In
terms of the Nusselt number NN = ® + 1.

Different models of turbulence yield different functions ®.
For example, the MLT expression for ® is (a, = 9/4) (Gough &
Weiss 1976; Cox & Giuli 1968, hereafter CG68).

OMLT = 44,3711 + D2 — 177, @

T=44%V — V.a) &)

A= _ceszAz 9 v _ A_2 9 v (6)
12acT? \2H, 9 \2H,) ~

where A is the mixing length and y = K/c,p is the thermo-
metric conductivity.

The goal of this paper is to provide a new expression for ®,
equation (32), to replace the MLT expression equation (4).

As we shall see, the natural variable entering the new con-
vective model is not X but

S =oRa=(81/2)%. 0

where ¢ = y/y is the Prandtl number and Ra is the Rayleigh
number (Ra = gafA*/vy; for « and B see eq. [14]). Further-
more, if one introduces the convective efficiency I,

A +1=(1+32, 8

the total flux (convective plus radiative) F,,, = F. + F,,4, With
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Fi=KTH;'V, and F,= KTH,'V, yields an equation
for I in terms of known quantities. In the MLT case, the result
is the well-known cubic equation

@ +T2+T—-6=0, 9
o= AZ(Vr - Vad) . (10)

In the new model, equation (9) will be replaced by equation (36).
Equations (2)6) coincide with equation (14.108) of CG68;

equation (8) coincides with equation (14.106) of CG68; and

equations (9) and (10) coincide with equation (14.82) of CG68.

2.2. The Expression for F,

The description of heat transfer by turbulent rather than
laminar convection is a difficult problem primarily because
turbulence is a highly nonlinear, diffusive phenomenon. A
physical property such as kinetic energy is shared among a
large number of eddies, the sizes of which range from almost
molecular to the dimensions of the system itself. A main chal-
lenge of a turbulence theory is to determine the distribution of
turbulent kinetic energy among the various eddies. The key
quantity is the turbulent energy spectrum function E(k),
defined so that the turbulent kinetic energy per unit mass is
(Batchelor 1953)

12 = J * Ekydk (11)

Since the scale size £ of an eddy can be related to k by £ = n/k,
the integration over k is in a sense equivalent to the integration
over all eddy sizes.

The convective flux F, given by equation (1) can be
expressed in terms of E(k) by (see, e.g., Yamaguchi 1963)

k=2t rzE(k)[ns(k) + vk?ak (12)
ga Jjo

so that, when F, is cast in the general form (3), the expression
for the dimensionless function ® becomes

2B k) + vk?Tdk | (13)

gy Jo
where

a=T7', =TV -V JH, . (14)
Here o is the thermal expansion coefficient, # is the super-
adiabatic temperature gradient, and v is the kinematic vis-
cosity.

The function ny(k) represents the rate at which energy is
injected into the system to keep the turbulence from decaying.
In this paper, n, is regarded as a known quantity, equation (18).
For the generalization of equations (12) and (13) to include
magnetic fields and rotation, as well as a derivation of equation
(12) itself, see Canuto & Hartke (1986).

2.3. The Non-linear Equation for the Turbulence Energy
Spectrum Function E(k)

As equations (1), (12), and (13) indicate, the evaluation of the
convective flux requires w and 8, which satisfy the coupled
Navier-Stokes and temperature equations that describe turbu-
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lent convection (Chandrasekhar 1961)
0
D) | i, 1) - Vol 1)
ot
= —Vp(x, t) + vWi(x, 1) + gab(x, )4 , (15a)
905D | w1y - VO(x, 1) = 2V 26(x, 1) + pwi . (15b)

ot

where p is the pressure divided by the constant density and
A=1(0,0,1).

The difficulty in solving equations (15) is due to the nonlin-
ear terms in both equations. Fourier expansion of o(x, t) and
0(x, t) in normal modes yields the equations satisfied by each
Fourier amplitude vk, t) and 8(k, 1):

0
[5 - ns(k)}vi(k, t

1
+ 5 inijm Ji[ dsq d3p 63(" —pP— Q)U,{q, t)vm(p, t) =0 ) (163)

0
I:(')_t — ns(k)}O(k, t)

+ ik; J J dPqdp 5k — p — gk, 10(p, 1) =0, (16b)

where 63(x) is the three-dimensional Dirac delta function and
I1;, is defined as (T;; = &;; — k; k;/k?, where §;; is the Kro-
necker delta symbol) I1;;,, = k; T;,,, + k,, T;;.

The rate n, originates from the fact that in going from equa-
tion (15) to equation (16) one takes

Pwik) = (n, + xk*)0(k) ,

X
Ok) ——— = 2

gab(k) 1 Ty = s ki) (7

which yields the expression for n (k) (Rayleigh 1916; Chandra-

sekhar 1961)

2ndk) = —(v + k* + [(v — 2)*k* + 4gafx(l + x) ~1]2,
(18)

where x accounts for the possible anisotropy in the eddy sizes,
x = (kZ + k})/kZ.

Given n,, the nonlinear equations (16) provide the ampli-
tudes v{k, t), which in turn yield the energy spectrum E(k)
defined as

E(k, t) = 4nk*{o¥k, Dk, 1) . (19)

Substitution of equations (18) and (19) in equation (13) would
yield the convective flux.

Unfortunately, equations (16) cannot be solved exactly.
Nevertheless, the last two decades have witnessed great
progress in devising approximation schemes that allow the
computation of E(k). The best models presently available are
the DIA model (Direct Interaction Approximation; Kraichnan
1964; Leslie 1973), the EDQNM model (Eddy Damped Quasi-
Normal Markovian; Orszag 1977, Lesieur 1987), and the RNG
model (Renormalization Group; Yakhot & Orszag 1986). For
extensive reviews of both the theories and their applications,
see Leslie (1973) and Lesieur (1987). An analytical model to
treat the large portion of the eddy spectrum has also been
proposed (Canuto & Goldman 1985).
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Multiplying equation (16a) by v¥(k, ¢), performing an ensem-
ble average using equation (19), and treating the nonlinear
terms following the rules of EDQNM (for details see Orszag
1977), the equation determining E(k) becomes (for the case of
DIA see Appendix A)

[ﬁ _ 2ns(k):lE(k, =Tl 1), 20)

ot

where the nonlinear transfer T(k, t) is given by

Tk, t) = L J dpdq E(q)

x [k*E(p) — p*E(k)]a(p, q, k)0(k, p, q) . (21)

For brevity we have omitted the time dependence of E and 8 in
equation (21). Here a(p, q, k) = (xy + z°)/q, where x, y, and z
are the cosines of the angles opposite k, p, and ¢, and the
symbol A signifies that the integration over p and q is such that
k = g + p. The function 6(k, p, q) represents the correlation
time scale governing the nonlinear interactions, and, given the
large variety of eddy sizes, f depends rather sensitively on
which group of eddies is considered, since large eddies exist
longer than small eddies. To complete equations (20) and (21),
we must add the equations for § (Kraichnan 1987), i.e.,

20k, 1)
o
ndk, t) = K*[v + v/(k, 0],

1 — 2n,(k, 06k, 1),
(22)

vik, ) = 15 LwG(P, O[SE(p, t) + pE'(p, t)]dp .

Here, v,(k, t) is the turbulent viscosity, and E'(p, t) = dE(p, t)/dp.

Equations (20)22) are the basic equations of turbulence that
determine the turbulent energy spectrum E(k). Among the many
tests of equations (20}+22), it has been shown that they yield
the well-known Kolmogorov spectrum E(k) oc k™53, which
has received the most experimental confirmation (Monin &
Yaglom 1975; Lesieur 1987).

In this paper we shall solve equations (20}-(22) for the case of
convection, derive the corresponding E(k), evaluate F,, and
compare the result with that of the MLT (CG68; Gough &
Weiss 1976; Langer 1986; Renzini 1987; Spruit et al. 1990).
However, since the numerical solutions of equations (20}(22)
that we shall present are the result of complicated nonlinear
processes among turbulent eddies that cannot be readily seen
by inspecting equation (21), and in order to avoid the impres-
sion that equations (20)—(22) are a black box, we discuss the
physics of T(k) in Appendix B.

2.4. The MLT as a Special Case of the General Theory: The
Ensuing Inconsistencies

Although the MLT is usually not formulated in the language
of turbulence theory and therefore not expressed in terms of
E(k), we shall do so here. Consider the approximation

E(k) > EM'T(k) = Eo 8(1 — k/kg) , (23)
where 8(x) is a delta function peaked around some large eddy
of wavenumber k, ~ A~ '. Inserting equation (23) in equations
{20)22), and assuming stationarity, gives E ~ n? k; 3, which,
substituted in equation (12), yields

Fo~ 2 ndlkolks @4
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Next we use equation (18) with k =k, and zero viscosity.
Using equation (3), the resulting @ is

®~ ST + Y2 - 177, 25

where S = (815,/2)Z and S, = 4xn~*(1 + x)~ 3, since we have
taken koA = n(1 + x)V/2. Within numerical factors (which
cannot be fully determined unless one adopts a model for the
eddy anisotropy factor x), equation (25) coincides with the
MLT expression (4). We have therefore shown that when equa-
tion (23) is used in the full turbulence model, equations (20)-
(22), the result is the MLT expression for F,.

Next, we shall show that the MLT expression for E(k), equa-
tion (23), describes the high-viscosity limit of the true E(k),
which we shall formally write as E(k, v) to exhibit its depen-
dence on v. In Figures 1-3 we show the dependence of E(k, v)
on the viscosity v. The largest eddies containing most of the
energy are found in the region around k,, whereas the region
beyond k; corresponds to the smallest eddies, where dissi-
pation of energy by viscosity occurs. The value of k; is deter-
mined by the value of v via (Landau & Lifshitz 1987)

-3/4
3

kyoc v (26)

so that in a highly viscous system k, and k, almost coincide,
i.e., only large eddies are found. By contrast, in a low-viscosity
system k; > k, (Figs. 1-3), and one must consider a much
wider range of eddy sizes. We thus have

koxky or Loty

lo> ¢y

Vo !
@7
voO0: k;»ky or _
Expressed in more quantitative terms, in a physical system of
arbitrary viscosity v, the ratio £y/¢, of the largest to the small-

est eddy can be expressed, for the case of large convective

kg

N\
L i ] I

i
107 l 10 102 103 104 10°

Fi1G. 1.—Turbulence energy spectrum E(k) vs. k, for the case of convection.
E(k) and k are in units of y2/A and A ™!, respectively. The strength of convec-
tion is represented by S = 10!°. The Prandtl numbser is 6 = v/x. (We recall that
for water o = 6.6, while for air ¢ = 0.7.) The figure corresponds to a rather
inviscid fluid with ¢ = 1073, As expected, the Kolmogorov region is very
extended, and the ratio between the largest and smallest eddies is about 10, as
predicted by equation (28). As one can observe, the MLT curve is a poor
approximation to the actual spectrum.
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k

F1G. 2.—Same as Fig. 1, but for a viscosity 10° larger, ¢ = 1, e.g., air. The
spectrum is narrower than in Fig. 1, but the MLT is still a poor approximation.

efficiencies, as

_i_o ~ 0_73/483/8 ~ G 3/4[A2(V - Vad)]3/8 s
d

28)

where o is the viscosity v in units of y (for air ¢ = 0.7, for water
6 = 6.6, while for stellar interiors ¢ is about 10~ °; Massaguer
1990). In Figures 1-3 we exhibit the dependence of the spec-
trum E(k, v) on viscosity by keeping the convective strength S
constant (S = 10'°) while increasing the viscosity. As one can
see, as v increases, the range of the spectrum of eddies is

E(k)
Told™ o =10°

s=10"°

FiG. 3.—Same as Fig. 1, but for a viscosity 10® times larger, 6 = 10°. This
value of the Prandtl number ¢ would correspond to a substance like oil. As one
can see, the spectrum of eddies is extremely reduced with respect to that of Fig.
1. The MLT has become a more realistic approximation.
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reduced according to the dependence on ¢ of equation (28),
and E(k) approaches a delta function as in equation (23). Thus,
the MLT expression (23) pertains to the first of equations (27),
ie., it describes a system with a large viscosity. We have there-
fore seen that in the MLT the two basic ingredients of equation
(12),

n(k, vy and E(k, v), 29

are assumed to be

n(k,v—>0) and E(k,v— c0), (30)
ie., the MLT contains mathematical and physical inconsis-
tencies. Mathematically, the two basic functions », and E are
taken with opposite values of the parameter v. Physically, as
stellar interiors have very small rather than very large v, the
second of expressions (30) is singularly inadequate. The
reduced spectrum of eddies represented by equation (23) misses
the contribution of a large group of eddies to the transport of
heat, thus leading to an underestimate of the convective flux.
On this basis alone, it may be concluded that the true value of
the convective flux F, is

F_ > FMLT 31
Equation (31) is borne out by stellar structure calculations, and
by the direct numerical simulation of turbulent convection
{Chan & Sofia 1989; Cabot et al. 1990).

2.5. The New Convective Flux

Using equation (18) [with a model for the anisotropy x so
that, in contrast to the MLT, the final result no longer contains
x, since x = (kA/m)*> — 1; see Canuto & Goldman 1985], we
have solved equations (20}{22) for E(k, t) and then used the
result to compute the convective flux given by equation (12).
Because of the highly nonlinear nature of equations (20)+22),
the numerical solution of the problem is rather time-
consuming. One begins with an initial trial function of the form
E(k, 0) oc k? exp (—ak?) and time-evolves it using equation (20)
until one reaches a stationary state, E(k, <o), which is the
desired spectrum E(k) to be used in equation (12). The most
time-consuming part of the problem is the evaluation of the
double integrals in the nonlinear transfer function (21).

As we have already discussed, highly viscous systems have a
narrow spectrum of eddies and are easy to treat. On the con-
trary, the lower the viscosity (or ¢), the wider the spectrum of
eddies and the more time-consuming the solution of equations
(20)+22). Although the ¢ appropriate for stellar interiors may
be as low as 107 ° (Massaguer 1990), we have chosen ¢ = 1073
as a reasonable representative value, since we found that when
o decreased further, E(k) no longer changed significantly. Rep-
resentative energy spectra E(k) versus k for different values of S,
or equivalently the convective efficiency, are shown in Figures
1-4.

With the new E(k), we have computed the turbulent quan-
tities of interest. In Table 1 we exhibit some representative
values of the kinetic energy (eq. [11]), the turbulent viscosity,
v, = v,(ky, 00) (eq. [22]), the new convective flux @ (eq. [13]),
and ®MLT (eq. [4]), as functions of S = 81%/2, which in turn is
simply related to the convective efficiency I' (eq. [8]). Numbers
in parentheses indicate powers of 10.

We have found that the values of the new convective flux @
given in Table 1 can be fitted quite closely by the following
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E (k) "y
0%k o=1073
s =10% 1of o
o
| 04 L 9t
3 8
107 | & 7t
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0 + al
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MLT T
o™ e L
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| 62 - 6] 2 4 6 8 10 12 14 6 I8
Log %
10“3 i 1 1 I Fi1G. 5—Fitted function @ (eq. [32]) compared with the numerical values
Ol | 10 102 03 (open circles).
k
. 5 — 10%
FiG. 4—Sameas Fig 1, but for § = 10 2.6. Solution of the Equations when the Total Flux Is Given
expression Using the new expression for F, the relation that replaces

®=a,T"[(1 +a,5)"— 177, (32

where X is defined by equations (5) and (6). The other coeffi-
cients are given by

a; = 24868, a,=9.7666 x 1072,
m=0.14972, n=0.18931, p=18503.

To highlight the difference with the MLT, in Figure 5 we plot
Q(2) versus X, where

(33)

o
Q) = gt - (34
As one can see, for large convective efficiencies, Q(Z) becomes a

constant, Q_, with the value

Q, =9.786. (35)
See also Cabot et al. (1990, especially Fig. 17a).
TABLE 1
RESULTS OF THE NEW MODEL*
log S KE v, @ oMLT Cc

[ S 5.26(3) 497 399 14.6 0.2241

6 e, 8.78(5) 59.0 1.07(3) 1.732)  0.2145

8 s 9.83(7) 6.07(2) 1.46(4) 1.76(3)  0.2096
10 .ooeeinen 1.01(10) 6.15(3) 1.65(5) 1.77(4) 0.2083
12 i, 1.01(12) 6.15(4) 1.73(6) 1.77(5) 0.2076
14 1.01(14) 6.15(5) 1.73(7) 1.77(6)  0.2143
16 e 1.01(16} 6.15(6) 1.73(8) 1.77(7) 0.2308

Note.—We note that the viscous dissipation rate,

€=2v f K2E(k)dk (ergs g=1s™ 1),

0

can easily be evaluated from Table 1, since €/e, = S®, where €, = y*A™%.

* Here S = 81%/2, with T given by equation (5). The turbulent kinetic
energy 112 = KE, is in units of (x/A)?; the turbulent viscosity, v,, is in units of
x; and the parameter C is defined in equation (40). The ratio ®/®"T is rep-
resented in Fig. 5.

equation (9) is
QI +I*+T—-6=0. (36)

The MLT result corresponds to Q(I') = 1. Equation (36) is
therefore the new equation to be solved: for a given value of
the thermodynamic quantity 6, it yields the value of I -or,
alternatively, the value of V — V4, as a function of V, — V4
which is considered known.

2.7. The Turbulent Pressure

In the presence of strong turbulence, the pressure derived
from the hydrostatic equilibrium equation py, 4, is related to
the thermodynamic pressure py, = Pyas + Praa DY

Dhydr = P + Prurt » (37

where p,,., is the contribution due to the turbulent motion.
Due to the lack of a turbulence model to calculate the turbu-
lence spectrum, it has been customary to parameterize p,,,, as

pturb = A*pcsz > (38)

where ¢, is the speed of sound and A4, is an empirical constant
assumed to be of order unity. Needless to say, this is not a
completely satisfactory approach.

From the theory of turbulence it is known that (Batchelor
1953)

Doy = p*(872%) 7
x f j E(R)E(K")| K — k"|~* sin* 0%k d°k” , (39)

where 6 is the angle between &’ and k”. For a justification of
equation (39) see equation (58). Using the E(k) derived from the
solution of equations (20}(22), we have computed expression
(39). To make the results manageable, we write them in terms
of the turbulent kinetic energy 4v? given in Table 1, i.e.,

Diurb = 2C(%pl),2) (40)

The dimensionless parameter C is given in Table 1.
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For large values of S, one can derive a simple formula relat-
ing the thermodynamic pressure to the total hydrostatic pres-
sure. As onec observes from Table 1, we have in good
approximation

307 = (t/A)S . (41)

Since from equations (7) and (5), § = 1624%V ~ V,,), using the
second part of equation (6), one obtains

Pturb = 2Cp(gA2/Hp)(V - Vad) s

where the pressure used to define H, is the total hydrostatic
pressure. Dividing equation (42) by py, q,, we further derive

D = phydr[l - ZC(A/Hp)Z(V - Vad)] .

This is, however, not the final expression, since in the presence
of turbulent pressure V,, is given by (CG68, p. 295).

Via = ViddInpy/dinpyy) , (44)
Via=@, - 1T,, (45)

which, if substituted in equation (43), transforms it into a differ-
ential equation in the variable

42)

43)

u= phydr/ Din » (46)
namely (with dp,,.4,/dz = gp),
f(z) -‘;—Z +g(zu—-1=0, 47)
where
f@) = 2CV H(A/H ), (48)
gz) =1 —2C(V — VEXA/H,)? . 49)
The solution of equation (47) yields the desired function
P = pth(phydr) . (50)

2.8. The Mixing Length A and Compressibility Effects

In this section we shall present a set of arguments that lead
us to propose that the phenomenon of “vertical stacking” of
the turbulent eddies may be represented by the expression (z is
the distance from the top of the convective zone)

A=z (51)
as an alternative to the traditional
A=aH,. (52)

We begin by asking which physical phenomenon has moti-
vated the introduction of equation (52). Since H, is smallest at
the top of the convective zone and becomes larger with increas-
ing depth, equation (52) represents the phenomenon of
“vertical stacking” of the eddies in the CZ: convective eddies
are assumed to be smallest near the top and larger deep in the
interior. Is this effect real, and what is it due to? First, we
discuss the fact that this is a phenomenon peculiar to convec-
tive turbulence and not, for example, to mechanically driven
turbulence; then we discuss the fact that vertical stacking is
caused by nonlinear compressibility effects (and not by the
nonlinear interactions among eddies). This leads us to con-
clude that equation (52) tries to account for what the original
formulation did not contain, i.e., compressibility effects, and is
therefore a sensible thing to do. However, we shall also argue
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that equation (51) may achieve the same goal with the con-
siderable advantage that it contains no adjustable parameters.

First argument—In an incompressible treatment of convec-
tive turbulence, the dimensionful physical variables are

g% B, v, x. (53)
With them, one can construct a unit of length, e.g.,
t~ g or (Pg)? . (54)

However, in a nearly inviscid interior of a star, the large eddies
(the dimensions of which are of the order of the size of the
system) are so widely separated (in k-space) from the smaller
eddies, or, alternatively, the range of eddies sizes is so large
(Fig. 1), that viscosity does not really enter the problem, and so
there is no length scale provided by the system. Furthermore,
in the limit of high convective efficiency, y does not enter the
problem; see equations (3) and (4) and equation (32).

Monin & Obukhov (1954, cited in Priestley 1959, p. 40) were
the first to point this out by stating that purely thermal turbu-
lence is “ self-patterning ”: there being no natural scale provid-
ed by the independent parameters of the problem, the length A
cannot be written as a multiple of an intrinsic length that does
not exist. This argument by itself would seem to suggest that
under the conditions of “self-patterning,” the only length is
indeed the distance z, and so equation (51) follows.

To make the point even clearer, let us consider a physical
situation in which turbulence is generated not by convection
but by a wind, i.e., a mechanically rather than thermally driven
turbulence (for example, the atmosphere of the Earth at night
when there is a temperature inversion and thus no convection).
Under these circumstances, observations (Kaimal et al. 1972)
indicate that the largest scales of mechanical turbulence are
considerably smaller than in the corresponding convective
case: large-scale mechanical turbulence is inhibited because
fluctuations would spend too much energy in working against
gravity. Stated differently, large-scale fluctuations are stable.
Therefore, mechanical turbulence consists mostly of small-
scale eddies, and it has a local character, so that A cannot
depend explicitly on the distance from the surface (Monin &
Yaglom 1975) and it cannot be written as in equation (51).

On the other hand, the opposite is true in the presence of
thermal stratification (i.e., convection), where observational
data indicate that large fluctuations become unstable, the spec-
trum of eddies is wide (Fig. 1), the phenomenon is no longer
local in character, and A must now depend on z.

Second argument—Here we shall show that the equations
we have used (and by extension the MLT equations) are based
on the assumption that the fluid is incompressible.

Consider the basic equations (16), and note that the absence
of the pressure term is due to the fact that under the condition
of incompressibility the pressure is no longer an independent
variable. Using the continuity equation,

aa—/Z+V°(pv)=0, (55)
the incompressibility condition, p = constant, is equivalent to
V-v=0, (56)
or
k-vk)y=0, (57)

e, only transverse waves are allowed. No longitudinal or
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sound waves can enter the problem, or, stated differently,
¢, — 0. Taking now the curl of equation (15a) and using equa-
tion (56), the pressure can be expressed in terms of the velocity
field via the Poisson equation

2

—p —— v;v;
p ox;0x; 7

(since p oc v?, we have p? oc v* oc E?, i.e., eq. [39]). Substituting
equation (58) into the Navier-Stokes equations, the pressure
term becomes part of the nonlinear terms represented by the
second term in equation (16a), which means that in incompress-
ible convection, pressure is not an independent variable that can
be used to construct a unit of length. One is therefore faced with
a dichotomy: mathematically, the adoption of equation (56)
leads to considerable simplifications of an extremely compli-
cated nonlinear problem; physically, however, stellar interiors
are compressible, and thus equation (56) cannot be true. The
solution would be to tackle the fully compressible problem:
although the formalism has recently become available (Hartke,
Canuto, & Alonso 1988a), detailed results have yet to be
obtained, partly because of the intimidating nature of the equa-
tions that replace equation (21). (Results of numerical simula-
tions are available, but they cannot yet be linked to complex
stellar structure codes; see Cloutman 1979; Massaguer &
Zahn 1980; Gilman & Glatzmeier 1981; Hurlburt, Toomre, &
Massaguer 1984; Gilman & Miller 1986; Chan & Sofia 1989;
Stein & Nordlund 1989; Hossain & Mullan 1990). The prag-
matic alternative has been the adoption of an incompressible
formalism (like the MLT or the present model) with compress-
ibility effects introduced via the mixing length A (and of course
the adiabatic gradient), a procedure that, while not entirely
satisfactory, has the merit of simplicity provided that it does
not create more problems than it tries to solve.

The next relevant question is: can one prove that equation
(52) does indeed incorporate compressibility effects? Since we
believe that this point is important, we shall discuss it here.
Consider the growth rate (18) in the limit when v and y do not
enter the problem. We have

ne = [gafx/(1 + x)]'/* , (59

i.c., the stability analysis under the condition of incompress-
ibility provides a natural unit of time, but not of length. Con-
sider now the case of a compressible fluid, and let @ be the
frequency (—Im w is the growth rate). The equation to be
solved is a second-order differential equation (Chimonas 1970)
which requires the specification of the velocity of sound ¢, and
density p as functions of z. In the case of an isothermal profile,
with constant c,, such an equation simplifies considerably
(Spiegel & Moore 1964; Einaudi 1980). In terms of Q = w?,

Q2 — Q2K (1 + y2g?/ak2cd) + k2 f2ct =0, (60)

where f is the Brunt-Viisild frequency (f* = —gof). For an
incompressible fluid, ¢2 — co, equation (60) reduces to equa-
tion (59). From equation (60) it is seen that a unit of length is
naturally provided by the second term in the parentheses,

VZp(x) = (58)

{=cllyg=plgp=H,, (61)

which is precisely the pressure scale height.

In conclusion, we can summarize the problem in the follow-
ing manner:

1. Incompressibility is assumed because it entails a consider-
able mathematical simplification in the treatment of turbu-
lence.
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2. Stellar interiors are, however, compressible (finite sound
speed), and efforts must therefore be made to incorporate this
feature into the problem.

3. Early work by Chan, Sofia, & Wolff (1982) and recent
work by Hossain & Mullan (1990) has shown that nonlinear
compressibility effects act quite separately from the nonlinear
interactions among eddies: the former are responsible for the
“vertical stacking ” of the eddies whereby convective eddies are
on average smaller at the top of the CZ and grow increasingly
larger with depth; the nonlinear interactions among eddies are
in turn responsible for the convective transport of heat.

4. The MLT treats the nonlinear interactions among eddies
with a one-eddy, incompressible model with compressibility
partially accounted for through equation (52). The procedure is
incomplete at best, since the presence of the free parameter o
considerably weakens the predictive power of the model.

5. The present model improves over the MLT in the treat-
ment of the nonlinear interactions and of the compressibility
effects because equation (51) accounts for the “vertical
stacking” without introducing the parameter .

6. When the growth rate and the energy spectrum E(k)
needed to compute F_ (eq. [12]) will be derived from a fully
compressible turbulence model, H, will emerge as the natural
unit of length: in that case, there will be no need for an «, since
all lengths will be measured in units of H .. (See § 3.8

3. APPLICATION OF THE NEW MODEL TO STELLAR STRUCTURES

3.1. The Numerical Scheme

Since in the new model equation (36) is no longer a cubic
relation as in the MLT case, it is convenient, using equation (3)
and the equation for the radiative transfer F,,, = KTH, 'V, to
write the total flux,

Ftotal = Fc + Frad ’ (62)

as
V=V, + 0V, Xl +®)}, (63)

where @ is given by equations (32) and (33). Since ® depends on
S, ie., on V itself, a simple iterative procedure (using log
variables) from a trial value of V — V,, will converge rapidly,
primarily because of the monotonic behavior of the ® versus S
function. From the point of view of an evolutionary code, we
found it even more expedient to compute a matrix of values of
log (V — V,4) as a function of log 4 and of log (V, — V), where
A is given by equation (6), and then bilinearly interpolate on
the matrix given in Table 2.

Next, at each point of the structure, the nonlocal nature of
the relation A = z requires the knowledge of the thickness of
the convective region from that point to the surface. Depend-
ing on the structure of the evolutionary code, we suggest two
feasible solutions. The most obvious one is to perform a
Newton-Raphson integration for the whole stellar structure,
up to the base of the optical atmosphere, since in this way a
trial determination of the upper boundary of the convective
region is always available. The results presented in this paper
have been obtained using such a scheme (Mazzitelli 1989a and
references therein).

The new formalism can also be easily implemented in evolu-
tionary codes in which grids of atmospheres and sub-
atmospheres (where overadiabatic convection is usually
restricted) are integrated via a Runge-Kutta scheme starting
from the surface. In fact, in the downward integration, as soon
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TABLE 2

OVERADIABATIC EXCESSES*

—4.000 —5.0000 —4.0000 —3.0000 —2.0000 —1.0000 0.0000
1.000 2.0000 3.0000 4.0000 5.0000 6.0000 6.9990

—3.5000 —5.0000 —4.0000 —3.0000 —2.0000 — 1.0000 0.0000
1.0000 2.0000 3.0000 4.0000 5.0000 5.9990 6.9396

—3.0000 —5.0000 —4.0000 —3.0000 —2.0000 1.0000 0.0000
1.0000 2.0000 3.0000 4.0000 4.9990 5.9396 6.5743

—2.5000 —5.0000 —4.0000 —3.0000 —2.0000 — 1.0000 0.0000
1.0000 2.0000 3.0000 3.9990 4.9396 5.5743 6.0685

—2.0000 —5.0000 —4.0000 —3.0000 —2.0000 —1.0000 0.0000
1.0000 2.0000 2.9990 3.9396 4.5743 5.0685 5.5711

—1.5000 —5.0000 —4.0000 —3.0000 —2.0000 — 1.0000 0.0000
1.0000 1.9990 2.9396 3.5743 4.0685 4.5711 5.1103

—-1.0000 —5.0000 —4.0000 —3.0000 —2.0000 — 1.0000 0.0000
0.9990 1.9396 2.5743 3.0685 3.5711 4.1103 4.6841

—0.5000 —5.0000 —4.0000 —3.0000 —2.0000 —1.0000 —0.0010
0.9396 1.5743 2.0685 2.5711 3.1103 3.6841 4.2842

0.0000 —5.0000 —4.0000 —3.0000 —2.0000 — 1.0010 —0.0604
0.5743 1.0685 1.5711 2.1103 2.6841 3.2842 3.9030

0.5000 —5.0000 —4.0000 —3.0000 —2.0010 —1.0604 —0.4257
0.0685 0.5711 1.1103 1.6841 2.2842 2.9030 3.5350

1.0000 —5.0000 —4.0000 —3.0010 —2.0604 —1.4257 —0.9315
—0.4289 0.1103 0.6841 1.2842 1.9030 2.5350 3.1764

1.5000 —5.0000 —4.0010 —3.0604 —2.4257 —1.9315 —1.4289

. —0.8897 —0.3159 0.2842 0.9030 1.5350 2.1764 2.8246

2.0000 —5.0010 —4.0604 —3.4257 —~2.9315 —2.4289 —1.8897
—1.3159 —0.7158 —0.0970 0.5350 1.1764 1.8246 2.4776

2.5000 —5.0604 —4.4257 —3.9315 —3.4289 —2.8897 —2.3159
—1.7158 —1.0970 —0.4650 0.1764 0.8246 1.4776 2.1342

3.0000 —5.4257 49315 —4.4289 —3.8897 —3.3159 —2.7158
—2.0970 —1.4650 —0.8236 —0.1754 0.4776 1.1342 1.7934

3.5000 —5.9315 —5.4289 —4.8897 —4.3159 —3.7158 —3.0970
—2.4650 —1.8236 —1.1754 —0.5224 0.1342 0.7934 1.4545

4.0000 —6.4289 —5.8897 —5.3159 —4.7158 —4.0970 —3.4650
—2.8236 —2.1754 —1.5224 —0.8658 —0.2066 0.4545 1.1171

4.5000 —6.8897 —6.3159 —5.7158 —5.0970 —4.4650 —3.8236
—3.1754 —2.5224 —1.8658 —1.2066 —0.5455 0.1171 0.7807

5.0000 —7.3159 —6.7158 —6.0970 —5.4650 —4.8236 —4.1754
—3.5224 —2.8658 —2.2066 —1.5455 —0.8829 —0.2193 0.4451

5.5000 —7.7158 —7.0970 —6.4650 —5.8236 —5.1754 —4.5224
—3.8658 —3.2066 —2.5455 —1.8829 —1.2193 —0.5549 0.1100

6.0000 —8.0970 —7.4650 —6.8236 —6.1754 —5.5224 —4.8658
—4.2066 —3.5455 —2.8829 —2.2193 —1.5549 —0.8900 —0.2246

6.5000 —8.4650 —7.8236 —7.1754 —6.5224 — 5.8658 —5.2066
—4.5455 —3.8829 —3.2193 —2.5549 —1.8900 —1.2246 0.5589

7.0000 —8.8236 —8.1754 —7.5224 —6.8658 —6.2066 —5.5455
—4.8829 —4.2193 —3.5549 —2.8900 —2.2246 ~1.5589 —0.8929

7.5000 —9.1754 —8.5224 —7.8658 —7.2066 —6.5455 —5.8829
—5.2193 —4.5549 —3.8900 —3.2246 —2.5589 —1.8929 —1.2268

8.0000 —9.5224 —8.8658 —8.2066 —7.5455 —6.8829 —6.2193
—5.5549 —4.8900 —4.2246 —3.5589 —2.8929 —2.2268 —1.5605

8.5000 —9.8658 —9.2066 —8.5455 —7.8829 —7.2193 —6.5549
—5.8900 —5.2246 —4.5589 —3.8929 —3.2268 —2.5605 —1.8941

9.0000 —10.2066 —9.5455 —8.8829 —8.2193 —7.5549 —6.8900
—6.2246 —5.5589 —4.8929 —4.2268 —3.5605 —2.8941 —2.2277

9.5000 —10.5455 —9.8829 —9.2193 —8.5549 —7.8900 —7.2246
—6.5589 —5.8925 —5.2268 —4.5605 —3.8941 —3.2277 —2.5612

10.0000 —10.8829 —10.2193 —9.5549 —8.8900 —8.2246 —7.5589
—6.8929 —6.2268 —5.5605 —4.8941 —4.2277 —3.5612 —2.8946

* In each block of values the first entry is the value of log A4; the
following 13 entries are the values of log (V — V_,) corresponding to
values of log (V, — V, ) ranging from —5.0 to +7.0. (A more com-
plete table is available through Bitnet to: Italo at Irmias.)
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as the upper boundary of the convective region is reached, one
can begin evaluating z. The only caution is that, since the
subatmospheric temperature gradient is steeper than in the
MLT case (see later), the grids of envelopes in the H-R diagram
must be kept relatively narrow, and the mesh zoning in the
overadiabatic region thinner.

Finally, to achieve completeness in the treatment of over-
adiabatic convection, one must include turbulence pressure. In
principle, p,, can be evaluated according to equation (42).
However, for the purpose of numerical stability in the evalu-
ation of V_4 (eq. [44]), we suggest using equations (46)-49). A
problem may arise, since pressure is a primary structural vari-
able, from which the density is evaluated through an equation
of state, so that a preliminary knowledge of p,,, is required,
from which p,,., p, V, and finally p,,,, itself are computed. In
the evolutionary code adopted in this paper, the problem is
avoided, since the overadiabatic zone is included in the
Newton-Raphson integrated region, the trial values of p,,,,, are
stored at each mesh point, and the numerical iterations auto-
matically lead to self-consistent convergence.

On the other hand, if one adopts an evolutionary code in
which overadiabaticity is restricted to the Runge-Kutta inte-
grated grids of envelopes, one will have to devise a workable
scheme to deal with p,,,. A numerical iteration scheme can in
principle be adopted (e.g., density is evaluated without
accounting for p.,, from which a trial value of p,,, is
obtained, to be used to recompute the density, and so on until
convergence is reached), but experience shows that the nonlin-
earity of overadiabatic convection is such that, at least in unso-
phisticated iterative schemes, convergence is rather slow. A
first attempt at implementing this scheme did work but proved
to be extremely time-consuming. In our opinion, only two so-
lutions exist for the treatment of p,,,,,: either one switches to a
full Newton-Raphson code up to the surface of the star (which
is not a mammoth task, as experience shows), or one simply
ignores py,.,, since, as will be shown later, there may be evolu-
tionary phases in which the influence of p,,,, is moderate.

32. The A = aH,Case

Although we have given reasons to prefer equation (51) over
(52), in a first attempt we adopt the relation A = aH, with the
new model for the convective flux (eq. [32]). This procedure
allows us to isolate and quantify the effect of having taken into
account all the eddies rather than just the largest ones, as in the
MLT. For consistency reasons, we also neglect p,,,-

To fit the Sun, the new model requires o = 0.7, with
Y =027 (Figs. 6 and 7, curve 2), while the standard MLT
model requires « = 1.4 (Figs. 6 and 7, curve 1). The depth of the
convective region turns out to be almost identical in the two
cases; this is no longer true, however, of the internal behavior
of the gradients as well as of the temperature profiles (Figs. 8
and 9). The fact that the new model requires a smaller value of
o is a direct consequence of the fact that the new convective
flux is much larger than the MLT values. The new value of
a < 1 is a welcome feature, since it implies that, along a con-
vective “bubble,” the pressure changes by a factor of 2 only,
whereas the MLT model requires a change by a factor of 4, far
less consistent with the underlying assumption of incompress-
ibility.

A further consequence of « < 1 is that, in the upper convec-
tive layers, the value of A4 is smaller than in the MLT case. This
leads to a larger degree of overadiabaticity (Fig. 8, curve 2). The
internal profile of temperature is also clearly changed (Fig. 9),
and this leads to differences in the behavior of the speed of
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FiG. 6—Evolutionary tracks in the H-R diagram for a 1 M, star, with
Y =0.27, Z = 0.02, for the three cases (1) MLT, A = [4H ,; (2) new theory,
A =07H, no turbulent pressure; {3) new theory, A = z, with turbulent pres-
sure.

sound c, close to the surface; the possible influence of these
differences in the computation of solar pulsational modes
remains to be investigated.

As can be seen from Figure 6, the evolutionary phases of the
Sun up to midway along the red giant branch are not signifi-
cantly different in cases 1 and 2. Almost the same is true for the
evolution of a globular cluster star of 0.8 M, Y = 0.23, and
Z =0.001 (Fig. 12). From these two evolutionary tracks, a
common feature emerges: the slope of the red giant branch is
somewhat steeper with the new theory, and the red giants
slightly hotter. A more detailed analysis of the temperature and
density profiles will be presented after discussing the results
arising from the full theory (see § 3.3).
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Fi1G. 7—Curves 1, 2, and 3; same as Fig. 6, but for the immediate neighbor-
hood of the present position of the Sun, marked by the solar symbol. Curve 3,
corresponding to the model without free parameters, fits the observed T,
within 0.2%. Curve 4 corresponds to the standard MLT with A = z: it fails to
fit T of the Sun by ~2%.
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In conclusion:

1. The new model describes turbulence in a more realistic
way than the MLT, for it includes the large spectrum of eddies
that characterize a nearly inviscid medium such as a stellar
interiors.

2. The new model can easily be implemented in existing
stellar codes.

3. The new model requires a < 1, which is a welcome feature
on its own right.

4. The new model gives rise to several differences with
respect to the MLT; on the basis of items 1-3 above, they are
expected to be in the right direction.

When all the above considerations are taken together, they
suggest that the new expression for the convective flux, equa-
tion (32), even with the A = «H, expression, is to be preferred
to the standard MLT.

3.3 The A = z Case

In this section we shall explore the new relation A =z,
where z is the distance between the point at which the over-
adiabatic gradient is to be computed and the top of the convec-
tive zone.

In this framework it is clear that, at least for the more exter-
nal convective layers, the values of z can be orders of magni-
tude smaller than H,. The corresponding values of 4 are thus
much smaller than in the previous cases (§ 3.2), with the conse-
quence that overadiabaticity is more strongly peaked toward
the surface of the convective zone. This result is indeed borne
out by detailed numerical computations: as seen from Figure
8, for a 1 M, star, the peak value of V — V4 for case 3 can be
twice as large asin cases 1 and 2.

A large value of V — V,, means that p,,, can no longer be
ignored (see eq. [42]). Our numerical computations indicate
that, in the case of the Sun, p,,,,, can easily reach 10% of the
total pressure, while for red giants it can be as large as 40%-—
50%. As for the adiabatic gradient (eq. [44]), it can increase up
to a maximum of 3%-5% for a 1 M, while for a red giant the
maximum increase can be 15%-20%. On the basis of these
estimates, we concluded that it was necessary to account for
Purs iNt the computations (see Figs. 6-9).

Turbulence pressure acts in several ways. First, since it con-
tributes to the total pressure, the part due to the gas pressure is
reduced, and this leads to a lower density in the overadiabatic
regions. This in turn leads to a decrease in the value of 4 (eq.
[6]), and thus an increase in the degree of overadiabaticity is to
be expected. However, in almost all the cases investigated in
the present work, there is a phenomenon which almost exactly
counteracts the previous effect. In fact, very close to the top of
the convective zone the opacity decreases significantly because
of the sharp drop in density (when approaching the surface of
the star). The further decrease in density due to p,,,,, leads to an
even faster decrease of the opacity and radiative gradient,
which, in turn, tends to lower the overadiabaticity. The last
effect of p,,, is to change the adiabatic gradient according to
equation (44). In the overadiabatic region, the increase in the
values of V,, leads to a corresponding increase in the values of
the convective gradient, and the surface of the star becomes
cooler.

In practice, while the effect of p,,,, results in a slight modifi-
cation in the internal behavior of the gradients, the location of
the evolutionary tracks in the H-R diagram is not severely
changed.
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3.4, Results

A basic requirement of any physical theory is that it should
be able to make predictions and thus be falsifiable, which is
possible only if the theory contains no adjustable parameters.
The MLT does not satisfy this requirement, nor does the
present theory if A is taken to be «H,. On the contrary, the
A = z model is falsifiable: if it does not fit the Sun, it ought to
be discarded.

The above conclusion needs to be further quantified, since
not all of the remaining physics is fully understood. Notwith-
standing phenomena such as rotation, magnetic fields etc.,
which may have small but perhaps detectable influence on
observed surface parameters, there are other physical quan-
tities such as opacities, thermodynamics, and nuclear reactions
which are known to a finite accuracy only. For example,
switching from the Cox & Stewart (1970) to the Los Alamos
(Huebner et al. 1977) opacities, adopted for the present compu-
tations, forces an increase in the helium abundance of 2%-3%
to fit the Sun’s luminosity. Furthermore, when the new low-
temperature opacities of A. D. Alexander (1990, private
communication) are adopted, as in the present case, the surface
temperature of the Sun changes again by 2%—-3%, requiring a
further adjustment of the value of a.

These examples imply that further improvements in the
input physics may be expected to lead to modifications of the
theoretical predictions of the order of a few percent, so that
even the most reliable turbulent convection theory might yield,
together with other present input physics, a T, for the Sun
slightly different from the observed value. For these reasons,
we decided that in the case of the Sun, a fit of T, within 1%
would have to be considered a successful prediction of the new
model.

For 1 M we computed one more evolutionary track from
the homogeneous main sequence up to midway along the red
giant branch. Figure 6 shows the theoretical H-R diagram for
the following three cases: (1) MLT, A = 1.4H,; (2) new theory,
A =07H,, and p,,, =0; and (3) new theory, A =z, and
pturb # 0

As already noted, the first two cases give nearly the same
results, but with the advantage in case 2 that « < 1. In the third
case the general topology seems to be somewhat different. The
beginning of the main-sequence phase coincides with the pre-
vious cases, the value of T, at the turnoff is somewhat lower
(~1%), while T, in the red giant phase is 4%—5% larger.
More interesting perhaps is Figure 7, which shows an enlarge-
ment of Figure 6 in the neighborhood of the present position of
the Sun (represented by the solar symbol). The new theory
(curve 3) fits the present position of the Sun within —10 K, or
—0.2%. The results of the A = z case without the turbulent
pressure are not reported in Figure 7; they would have fitted
the Sun within a similar accuracy, but with opposite sign,
+0.2%. An attempt to make the MLT more self-consistent by
assuming A = z was not successful, since it failed to fit the
present solar T, by ~2% (Fig. 7, curve 4; see also Fig. 10,
curve 3).

Given the previous discussion about the possible uncer-
tainties in the input physics, the fit provided by curve 3 of
Figure 7 is surprisingly good.

While this fit may be considered a strong argument in favor
of the overall correctness of the model suggested here, a much
more extensive analysis aimed at comparing theoretical evolu-
tionary tracks with observational data must still be carried out
to put the model on a firmer basis. For example, one should
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undertake the evaluation of extensive grids of theoretical iso-
chrones to try to match the observed H-R diagrams of gobular
and open clusters. In doing so, it will be necessary, however, to
keep in mind that the vast majority of existing correlations
between theoretical quantities (e.g., bolometric luminosities
and effective temperatures) and observational quantities (e.g.,
magnitudes and colors) already contain elements of a chosen
theoretical model. This implies that great care must be exer-
cised in ensuring full consistency in the comparison process.
The same is true for the case of correlations obtained by means
of model atmospheres. In fact, the theoretical evaluation of the
spectral distribution of the luminous flux from the surface of a
star of given total luminosity and surface gravity requires the
knowledge of the physical stratifications well below the optical
atmosphere itself, down to Rosseland optical depths of the
order of 10 or more, where overadiabatic convection, and thus
the need for a theoretical model, comes into play.

Another interesting possibility is to use helioseismological
data, since, as already noted, the internal behavior of the con-
vective gradients predicted by the new theory is quite different
from those of the MLT (Fig. 8). In the following section we
shall discuss this point in more detail.

3.5. Temperature and Density Stratifications

For the present Sun the profile of the convective gradient V
at the top of the overadiabatic region is shown in Figure 8 for
the three cases (1) MLT, A = 1.4H ,; (2) new theory, A =0.7H,
and p,,, = 0;(3) new theory, A = z, and p,,,, # 0. On the basis
of the discussions in § 3.2 and 3.3, it is not surprising to see
that, when moving from the surface inward, the convective
gradient of the new model sticks to the (virtual) radiative one
much longer than in the MLT and/or case 2. This is due to the
fact already mentioned that, since z is much smaller than H,, in
this region, the value of A is also smaller and convection is
significantly more overadiabatic. As z increases, it eventually
becomes larger than H,, at which point convection becomes
less overadiabatic than in the MLT and/or case 2, and the
convective gradient begins to decrease faster.

3 T T T T T T T T T T T T T T
= Mg p
2F ~
vV T 3 i
I 2 ]
- I .
0 1 (I 1 ! 1 1 1 I 1 1 L i L
0.9997 0.9998 0.9999 L0000
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FiG. 8—Behavior of the convective gradients close to the surface of the
Sun. The three cases are the same as in Fig. 6. The case without free param-
eters, curve 3, shows a much larger degree of overadiabaticity than the other
cases; note, however, that even curve 2 is more overadiabatic than the stan-
dard MLT.
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The peaked behavior of the V versus R function in a narrow
subsurface deserves some comments. Since in these layers the
values of z are rather small, any uncertainties in the determi-
nation of the exact point at which convection ceases, leads to
similar uncertainties in the values of z in a critical region. In all
the cases considered in this paper, this problem does not arise
since the upper boundary of convection coincides almost iden-
tically with the bottom of the optical subatmosphere; however,
situations may arise (e.g., very high luminosity red giants and
supergiants), in which the radial distance between the top of
the convective zone and the base of the photosphere is not
negligible. Consistent with the boundary conditions under-
lying both the MLT, the present theory and practically all
available models of turbulent convection, both velocity and
acceleration (buoyancy) vanish when V — V,; vanishes (see
CG68, eqgs. [14.118-14.1217); this means that convective over-
shooting should, in principle, not be allowed; it is nevertheless
worth noticing that, at least for the case of supergiants, the
possible existence of even a small amount of convective over-
shooting (expected on physical grounds) would pose the ques-
tion of where to start evaluating z, that is, from the top of the
overshooting layers or from the layer where the Schwarzschild
criterion V — V4 — O s satisfied ?

From the point of view of internal temperature profiles (Fig.
9), the merging of the surface temperatures of the three models
is the consequence of a spontaneous, although quite surprising,
fine tuning. In Figure 9 the temperature profiles are shown for
the same three cases as in Figure 8, but for a deeper region,
down to the point where overadiabaticity has disappeared.

Starting from the left and moving outward, at first the tem-
peratures coincide, since in the deep layers they are mainly
determined by the overall stellar properties. As soon as a small
degree of overadiabaticity develops, in the MLT case the over-
adiabatic gradient begins to grow slightly larger than in the
new model and thus the temperature begins to decrease
sharply. A maximum difference in temperature of A log T ~
0.1 between the MLT and the new theory is attained in the
region close to the surface; then the sharper increases of the
overadiabatic gradient obtained with the new model give rise

T T I 1 =
4.l .
4 .
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F1G. 9.—Behavior of the temperature for the same three cases described in
Fig. 6. The relatively large differences in temperature in the immediate sub-
surface layers are reset both at the surface and toward the interior of the star.
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F16. 10—Evolutionary tracks in the H-R diagram for a 1 M, star, with
Y =0.27 and Z = 0.02, for (1) new theory, A = z, with turbulent pressure; (2)
new theory, A = z, no turbulent pressure; and (3) MLT, A = z, no turbulent
pressure.

to a sharper drop in temperature; eventually, the temperatures
merge at the surface.

In practice, the interplay of the gradients is such that the
final surface temperature difference between the two extreme
cases is no more than 2% of the maximum internal tem-
perature difference that is attained in the subsurface. This is
not particularly relevant to the solar model, since a better
choice of o in the MLT case would have fitted the same T, as
in the A = z case. It is, however, more relevant in the red giant
case, where the surface temperature differences between the
MLT and the new theory are not negligible. These differences
correspond to less than 10% of the maximum temperature
differences inside the corresponding structures, near the peak
of the overadiabatic gradient.

As for the thickness of the whole convective region for the
Sun, it is easy to understand that, since the differences among
the three above treatments are limited to the thin subsurface
layers, the conditions at the bottom of the convective envelope
are not affected, and the total thickness is the same in all cases,
consistent with the requirements from helioseismology.

3.6. Other Results: Younger Globular Clusters?

It may be of interest to compare tracks with and without
turbulence pressure, to compute MLT tracks with A = z, as
well as to apply the new model to a globular cluster star. The
three tracks shown in Figure 10 correspond to the following:
(1) new theory, A = z, py.p, # 0; (2) new theory, A = z, pyp =
0;and 3) MLT, A = z, p,,,p, = 0. As can be seen, in the absence
of turbulent pressure, the surface temperature is ~1% hotter
in the red giant region, an effect whose neglect may not signifi-
cantly affect the comparison with observational data. See also
Figure 7.

Density profiles inside the overadiabatic region are different
in the various cases, as shown in Figure 11, where we exhibit
four different cases. The main conclusion is that the more com-
plete the model, the more pronounced is the density inversion
in the overadiabatic region.

The new model has also been applied to a globular cluster
star, namely, a 0.8 M, star with Y = 0.23 and Z = 107 3. The
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FiGg. 11.—Behavior of density as a function of radius close to the surface of
the Sun, for the four cases (1) MLT, A = 1.4H, no turbulent pressure; (2) new
theory, A = 0.7H ,, no turbulent pressure; (3) new theory, A = z, no turbulent
pressure; and (4) new theory, A = z, with turbulent pressure. As can be appre-
ciated, the more complete version of the new model, curve 4, predicts a density
inversion larger than any of the previous models.

results shown in Figure 12 correspond to three different cases.
The. MLT and case 2 are similar, as for the Sun, with case 2
giving a slightly hotter red giant. Surprisingly enough,
however, the full case 3 gives rise not only to a cooler main-
sequence star (up to 6%—7% in T at the turnoff) but also to a
cooler red giant, rather than to a hotter one as for the Sun (Fig.
6). Curve 3 implies that to fit the observed colors of the turnoff
of globular clusters, a somewhat larger mass, and thus a
younger age, would be required, a result that might have inter-
esting cosmological consequences.

3.7. Future Work: Stellar Structure

Although the following list is not exhaustive, we cite some of
the main lines of research that may be undertaken in the future.
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F1G. 12—Evolutionary track in the H-R diagram for a typical globular
cluster star of 0.8 M, with Y = 0.23 and Z = 0.001. The three cases are as in
Fig. 6. The treatment without free parameters, curve 3, seems to give rise to at
least “reasonable ” evolutionary features also in this case.
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1. The low-mass main-sequence stars are known to be cooler
than theoretical models predict (Burrows, Hubbard, & Lunine
1989). At least in part, this is probably due to the fact that the
relatively large density in the subatmospheres of these stars
does not allow a sufficient degree of overadiabaticity to
develop, at least within the MLT framework. Since in the
present theory a peak of overadiabaticity is expected to
develop also for these structures, it is quite likely that the new
theory might yield lower surface temperatures and thus better
agreement with the data.

2. A correct theoretical explanation of the blue edge of the
instability strips for both helium-rich and hydrogen-rich white
dwarfs requires a convective flux in excess of that provided by
the standard MLT (Tassoul, Fontaine, & Winget 1990). While
this is difficult to achieve within the MLT with the same value
of « that fits the Sun, we have already seen that the new theory
(Fig. 5) naturally yields convective fluxes up to 10 times larger
than the MLT values. In general, all the cases in which surface
convection is relevant in determining the pulsational behavior
of stars (e.g, RR Lyrae stars, Mira variables, etc) can be
affected by the new theory.

3. For horizontal-branch stars, theory predicts that at the
end of the central helium-burning phase large-scale mixing
episodes, usually called “ breathing pulses,” should occur. Since
the observational luminosity functions do not agree with the
evolutionary times computed when the breathing pulses occur,
it has been suggested that the mixing time scale of semi-
convection may be so long as to inhibit these final pulses
(Caputo et al. 1989). Within the MLT framework, however, the
convective velocities are so large that inhibition of the breath-
ing pulses seems impossible. On the other hand, the new theory
prediction of much lower convective velocities may naturally
resolve the breathing pulse problem.

4. The lower values of the convective velocities also imply
that convective overshooting (if any) should be definitely
smaller than that predicted by the MLT (Bressan, Bertelli, &
Chiosi 1986).

5. It has been known for quite some time that the so-called
third dredge-up can give rise to carbon stars only if the surface
convection is very efficient. Actually, in the standard MLT, a
value of at least « = 1.5 is required (Lattanzio 1989) to produce
the desired effect. The new theory predicts larger convective
fluxes which, from this point of view, correspond to MLT
values of « even larger than 1.5, so that it can probably help in
naturally explaining the carbon star phenomenon.

6. During the “second dredge-up,” intermediate-mass stars
(<8-9 M) show a large degree of overadiabaticity for most of
their structure, all the way down to the base of the convective
envelope (Mazzitelli 1989b). Within the new theory, the struc-
ture of these stars is likely to be substantially different from
that in the MLT, although in the absence of detailed calcu-
lations it is difficult to anticipate in which direction.

7. The onset of mass exchange in binary stars is largely
dependent on the gravothermal reaction of the subsurface
overadiabatic layers to mass loss (D’Antona, Mazzitelli, &
Ritter 1989). Since the new overadiabatic gradients can be sub-
stantially different from the MLT values, this mechanism must
also be restudied using the new model.

In conclusion, the new theory, especially with A = z, consti-
tutes a significant departure from the original MLT.

3.8. Future Work: Modeling Turbulence

As we have already discussed in § 2.8, a treatment of stellar
turbulent convection must include the effects of compress-
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ibility. In fact, in stellar interiors, the value of ¢, is finite, and yet
all available models of convective turbulence adopt the con-
siderable simplification that ¢, — co. To be specific, let us for-
mally write the convective flux as

F.=F({I}A), (64)

where by {I'} we mean the functional dependence of F. on the
convective efficiency I'. A complete theory would yield

T} ={THey, ..), A=A, ..) (65)

for arbitrary values of ¢,. What we have today are models that
give us

{T} = {T}c,= 0, ..), le, incompressible,

(66a)
A = A # ©) = act/yg = aH,,

or
A=z, (66b)

leading to an expression for F, in which turbulence is treated
as incompressible but some of the parameters (A and the tem-
perature gradient) attempt to account for compressibility
effects. The situation is not fully satisfactory.

What one must strive for is a model of fully compressible
turbulent convection. At present, we possess the formalism
(Hartke et al. 1988a) to carry out a consistent treatment, but
until specific results become available, it is impossible to
predict whether F, will increase or decrease. This is due to the
following reason. Using equation (12), we can formally write

F(c,) o Elcgnycy) (67)

where we have explicitly exhibited c, to indicate that we would
like a result valid for arbitrary values of c,. Rewrite formula
(67) as

i.e., compressible ,

F(c)) = pyp3 F(0) , (68)

where F (c0) is the flux computed in this paper and where
#y = Elcg)/E(c, = 0) , (69a)
Ha = nfe)/nec, = ) . (69b)

Since on physical grounds one expects g, < 1 but u, > 1, it is
not possible at this stage to know whether compressibility will
increase or decrease the convective flux. The result u, > 1 is
based on the energy principle (the more compressible the
system, the more unstable it is [Schmidt 1966; Newcomb
1983]; for a convective instability see Bohm 1963, Chitre &
Gokhale 1973, and Fox 1985; for a Rayleigh-Taylor instability
see Bernstein & Book 1983). The reason why 4, is expected to
be less than unity is as follows. The presence of compressibility
means that not all the energy input into the fluid is going to
generate turbulence: part of it will be used to excite compress-
ible modes, e.g., sound waves, and so the resulting eddy energy
spectrum will be reduced in magnitude. Mathematically, com-
pressibility effects lead to a considerable complication of the
equations, since there are now two spectral functions, the
transverse one, E{k), and the longitudinal one, E,(k). While
only the first is needed to compute the convective flux, the two
are coupled by nonlinear differential equations which must be
solved simultaneously (Hartke et al. 1988a). Work in this direc-
tion is in progress.

4. CONCLUSIONS

In the first decades of this century, the mixing-length theory
(MLT) was widely and rather successfully applied to engineer-
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ing flows by the schools of Prandtl and von Karman, among
others. It seems reasonable to speculate that the success and
simplicity of the MLT might have been a strong incentive to
adopt it to study turbulent convection in stars. The expectation
has been amply rewarded, for the MLT has proved to be a very
valuable tool. Regrettably, however, repeated attempts to
improve the limitations inherent in the original MLT model
have not succeeded, and today the MLT is still used in essen-
tially its original form. In the terminology of Gough & Weiss
(1976), the addition of “salt and pepper” to the original
version of the MLT have not proved sufficient: new flavors
must be added. We have identified the following two:

1. A turbulent viscous flow can reasonably be approximated
by a one-mode, one-eddy, one-length scale model such as the
MLT, since in fact the width of the turbulent spectrum of
eddies is inversely proportional to viscosity (eq. [28]). Stellar
interiors are, on the other hand, nearly inviscid, and the wide
range of eddies that characterize them cannot be fully rep-
resented by a one-eddy model, like the MLT (Figs. 1-4). This
point was also emphasized by Marcus, Press, & Teukolsky
(1983). In adopting the MLT, one is bound to underestimate
the flux (eq. [31]). Our first task was therefore to abandon the
MLT one-mode approach, use two modern theories of turbu-
lence, and compute the entire spectrum of eddies. This natu-
rally leads to a larger flux (eq. [32]), in agreement with other
authors (Chan & Sofia 1989; Cabot et al. 1990).

2. To account for compressibility effects, the MLT adopts
the expression A = aH,. The ensuing values of o are usually
larger than unity, implying a logical inconsistency with the
premises of the model. We do not yet have a model for com-
pressible turbulence, and so we must also rely on some expres-
sion for A derived from outside the model itself. When we
adopt A = aH ,, we find that, in contrast to the MLT, our «
turns out to be less than unity, which is a welcome feature.
However, we also present arguments to suggest that, in con-
trast to mechanically driven turbulence—which is usually a
local, small-scale phenomenon, so that A cannot depend on the
global variable z—thermally driven turbulence is not a local
phenomenon. Furthermore, since in the absence of v and yx
(high convective efficiency) one cannot form a unit of length
with the variables of the problem, the only remaining choice is
A = A(2), of which A = z is the simplest form.

The new model was included in an evolutionary code, and
representative evolutionary tracks were calculated. In a first
treatment we used the new convective flux (eq. [32]) but
retained the A = aH, model. The results are similar to those of
the MLT model but require a < 1, thus easing some of the
inconsistencies that the MLT has with « > 1. A detailed study
with the parameter-free A = z formula was also made, and the
results are promising. The latter formula did not give accept-
able results when used in the MLT.

The main astrophysical result is that, with the new theory,
the Sun has been fitted within ~0.2% accuracy without adjust-
able parameters. In addition, since the subatmospheric tem-
perature and density profiles for the Sun are quite different
from the MLT case, the helioseismological properties of the
Sun are also expected to change. Work in this field is in
progress (L. Paterno 1990, private communication).

The location in the H-R diagram of the evolutionary tracks
of globular cluster stars is shifted toward lower surface tem-
peratures. If confirmed by more extensive calculations, this
would imply that the observed properties of globular clusters
should be fitted by larger turnoff masses, and thus shorter ages,
a result of possible cosmological significance.
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Other astrophysical tests may be of interest. Perhaps the
most immediate one, also in progress, is the detailed compari-
son of theoretical predictions with observational data per-
taining to the lower main sequence, where the MLT predicts
values of T, definitively larger than the observed values, while
the new theory yields lower T, and thus in the right direction.
The larger fluxes predicted by the new theory imply lower
convective velocities, at least far from the peak of over-
adiabaticity very close to the surface of the star. This implies
that convective overshooting will be reduced with respect to
the MLT case.
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The conceptual improvements with respect to the MLT, the
lack of adjustable parameters, the quantitative fit to the data
we have analyzed, as well as the qualitative indications that the
model may solve other problems, seem to augur well for the
future of the new model.
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APPENDIX A
THE DIA MODEL OF TURBULENCE

The direct interaction approximation (DIA; Kraichnan 1964; Leslie 1973) is the most complete theory of turbulence, since it
constitutes the most deterministic derivation of the equation for E(k) from the full Navier-Stokes equations presently available.
Introducing the notation

E(k) = 4nk*Q(k, 0) , (Al)

the equation satisfied by Q(k, 1) is given by

[g — ns(k):IQ(k, t—s)=2n J J kpq b(k, q, p)dp dq[ f ' ds'G(k, s — sYQ(q, t — 5)Q(p, t — 5")
A ~

- Jl ds'G(g, t — s)Q(p, t — sHQlk, s — s’):‘ . (A2

The greater complexity of the equation for E(k) within the DIA is due to the fact that while the triple correlation function 8 of the
EDQNM model must be prescribed from outside the model, within the DIA all the functions are prescribed self-consistently from
within the theory. The physical analog of the function 0 is the Green function (or infinitesimal response function) G(k, t) which is
obtained by solving the equation

3
[% — ns(k):|G(k, t—s)=—2n J j kqp bk, q, p)dq dp J ds'G(g, t — s)Qp, t —sGk, s —s) + (t — s) . (A3)
A s

The function b is defined as b(k, g, p) = {q/k)}(xy + z*), with the rest of the notation identical to that introduced in the main text.

Needless to say, the DIA equations are far more complex to solve than the EDQNM model. However, since we had coded them
to study laboratory thermal convection (Hartke, Canuto, & Dannevik 1988b), we employed the same code to study the case of
interest here. Because of the large demand in computer time, we did not solve them for all the cases of interest but only for few
selected cases in order to compare them with the EDQNM results. In all cases of interest, the bulk properties of the two models
(kinetic energy, convective flux, etc.) did not differ significantly from the EDQNM values.

APPENDIX B
THE EDQNM MODEL

To appreciate the physics contained in T(k) (eq. [21]), we first note that the interactions contributing to T(k, t) are of two kinds:
local and nonlocal. In _the first case the wavenumbers k, p, and ¢ are of the same order, while in the second case one of the
wavenumbers is either much smaller or larger than the other two. In what follows, we shall give the expressions for the nonlocal
interactions, since they allow an interesting physical interpretation. They are defined by

k<p=xgq, (B1)
(B2)

In the first case T(k) is expanded in powers of k/p < 1, while in the second case the expansion is in powers of g/k < 1. These
expansions correspond to different physical processes. In practice, one performs the expansion not in T(k) but in the function TI(k)

g<k=~p.
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which is obtained after integrating (20) from 0 to k. We have [ (k) is the mean squared vorticity]

— % J E(q, t)dq + e(k, t) = 2vylk, 1) + TI(k, ¢) (B3)
0
a k
Tk, t)y= — y Ik, t) yk) = L p*E(p)dp , (B4)
ek) =2 L[ns(p) + vp*1E(p)dp . (BS)

The physical interpretation of equation (B3) is best seen in the stationary case: €(k) represents the input of energy (from the
instability n ) into the wavenumber region from O to k; this energy is partly dissipated into heat by kinematic viscosity v and partly
transferred to all the remaining eddies by the nonlinear interactions represented by II(k). The nonlinear terms are neither a source
nor a sink of energy; they redistribute the available energy among eddies of different sizes, and thus they do not contribute to the
total balance of energy. If we extend the wavenumber k to oo, we obtain €:

€=2y przE@)dp , (B6)
0

which means that all the energy input is dissipated into heat by viscous forces.
Performing the expansions (B1) and (B2), we derive (NL = nonlocal)

H_>HNL=Ha+Hb’ (B7)
m,= 0P + 02, (BY)
and similarly for IT,. The results are
MY = 29k, vk, ), (B9)
vk, 1) = 75 J 8p, HISE(p, t) + pE'(p, 1)1dp , (B10)
k
4 k o[ E 2
ne = — 12 [aaa | 7] 22 o 0ap
15 Jo & p
= —B(k)Z(k) , (B11)

where B(k) and Z(k) represent the first and second integrals and E’ = dE(p)/dp. To clarify the physical meaning of the new term IT{?,
substitute equation (B7) in equation (B3), take the derivative with respect to k, and consider the stationary state. Grouping tcrms
gives a balance of sources (left side) and sinks (right 51de) with v'(k) < 0,

W 1, ZH)
El 2 > < Bl E(k)

The various terms may be interpreted as follows (Fig. 13). The first term on the left represents the contribution from the source to the
group of eddies around the wavenumber k. The second term on the left represents the contribution of all the eddies with
wavenumbers in the interval [0, k]. The third term on the left represents the contribution from all the eddies with wavenumbers in
the interval (k, co) and is, therefore, a backscatter term. The first term on the right represents the loss of energy to the eddies with
wavenumbers in the interval (k, c0) via a turbulent viscosity. Finally, the second term on the right represents a loss of energy to the
eddies with wavenumbers in the interval [0, k].

=
e % % K ze”

[
T

0 k

nyk) — vi(k) S~ = v(lk* + % k= 20(k)B(k)E(K) . (B12)

N

F1G. 13.—Schematic representation of the energy balance (eq. [B12]), showing the various sources and sinks at wavenumber k.
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Next, consider the process given by equation (B2). The expansion of TI(k, t) in powers of g/k gives

Y = £ O(k, O)y(k, OLKEK, t) — K*E'(k, ] , (B13)

M@ = % k*O(k, )E*(k, 1) . (B14)

While IT{?’ does not have a direct physical interpretation (it may be shown to be a higher order term that contributes little to the
energy spectrum), IT{" (an expression similar to one originally proposed by Obukhov) shows that the energy transfer across a
wavenumber k is analogous to the energy transfer from the mean flow to turbulence via Reynolds stresses: eddies with wavenum-
bers greater than k provide the Reynolds stress that Obukhov wrote as the integral of E(k) from k to co, while the mean rate of strain
was taken to be y'/?(k). Since it was later noted that this expression gave unphysical results, a new form, known as the modified
Obukhov transfer, was proposed, i.., kE(k)y'/*(k).
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